Reidemeister moves and groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Sets of Reidemeister Moves

It is well known that any two diagrams representing the same oriented link are related by a finite sequence of Reidemeister moves Ω1, Ω2 and Ω3. Depending on orientations of fragments involved in the moves, one may distinguish 4 different versions of each of the Ω1 and Ω2 moves, and 8 versions of the Ω3 move. We introduce a minimal generating set of four oriented Reidemeister moves, which inclu...

متن کامل

The Number of Reidemeister Moves Needed for Unknotting the Number of Reidemeister Moves Needed for Unknotting

There is a positive constant c 1 such that for any diagram D representing the unknot, there is a sequence of at most 2 c 1 n Reidemeister moves that will convert it to a trivial knot diagram, where n is the number of crossings in D. A similar result holds for elementary moves on a polyg-onal knot K embedded in the 1-skeleton of the interior of a compact, orientable, triangulated PL 3-manifold M...

متن کامل

Making Curves Minimally Crossing by Reidemeister Moves

Let C1 , ..., Ck be a system of closed curves on a triangulizable surface S. The system is called minimally crossing if each curve Ci has a minimal number of selfintersections among all curves C$i freely homotopic to Ci and if each pair Ci , Cj has a minimal number of intersections among all curve pairs C$i , C$j freely homotopic to Ci , Cj respectively (i, j=1, ..., k, i{ j). The system is cal...

متن کامل

On the Necessity of Reidemeister Moves

We show that every knot type admits a pair of diagrams that cannot be made identical without using Reidemeister Ω2-moves. We also show that our proof is compatible with known results for the other move types, in the sense that every knot type admits a pair of diagrams that cannot be made identical without using all of the move types.

متن کامل

Unknotting number and number of Reidemeister moves needed for unlinking

Article history: Received 25 April 2011 Received in revised form 11 January 2012 Accepted 11 January 2012

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 2015

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s0218216515400064